Jacek Gaertig

Basic Information

619 Biological Sciences Building
Phone Number:
Lab phone:
(706) 542-0848

We explore the poorly understood mechanisms that govern the assembly  of microtubule-based organelles, including cilia.  We primarly use the free-living ciliated protist, Tetrahymena thermophila, as a model that offers excellent genetic (forward and reverse), biochemical and imaging approaches. On its surface Tetrahymena carries numerous microtubule-based organelles, including ~1000 motile cilia, that are used for locomotion, feeding and sensation. The length of individual cilia is dependent on the position within the cell. We use genetic screens and new generation sequencing to identify genes whose products control the length of cilia. We also explore how the cilium is subdivided into distinct compartments, with particular interest in the organization of the ciliary distal tip, a region where the cilium grows by elongation of microtubules. Our recent work (Louka et al., Journal of Cell Biology 2018) led to identification of proteins that control the positions of microtubule ends near the tips of cilia. 


A total internal reflection microscopy  imaging of DYF1-GFP in cilia of live (partially paralyzed) Tetrahymena  (video by Patrick Yuyang Jiang in collaboration with Karl Lechtreck)

Recently we initiated studies of the largely unknown mechanisms that control the position  of  organelles in reference to the overall cellular geometry. 

Image 3-3croped.jpg

Two mating pairs of Tetrahymena labeled with anti-tubulin antibodies. The confocal image was produced by Mayukh Guha and Muthugapatti Kandasamy (University of Georgia).


The ongoing projects include: 1) discovery of gene products that affect the placement of organelles (cilia) along either the anteroposterior or circumferential cell axes;  2) Genetic interactor screens for components of cilium length regulation pathway;  3) identification of proteins that perform structural and signaling roles at the  distal tip of cilia.


Research Interests:

Biogenesis of microtubule-based organelles including cilia, organelle compartmentalization, intracellular pattern formation.

Louka, P., Vasudevan, K., Guha, M., Joachimiak E., Wloga, D., Tomasi, R., Baroud, C.N., Dupuis-WilliaLouka, P., Vasudevan, K., Guha, M., Joachimiak E., Wloga, D., Tomasi, R., Baroud, C.N., Dupuis-Williams, P., Galati D.F., Pearson, C.G., Rice L.M., Moresco, J., Yates J.R., Jiang, Y-Y., Lechtreck, K., Dentler, W., and Gaertig, J. Proteins that control the geometry of microtubules at the ends of cilia (2018). J. Cell Biol., DOI: 10.1083/jcb.201804141.

Stoddard, D., Zhao, Y., Bayless, B.A., Gui, L., Louka, P., Dave, D., Suryawanshi, S., Tomasi, R., Dupuis-William, P., Baroud, C., Gaertig, J., Winey, M., Nicastro, D.  (2018). TetrahymenaRIB72A and RIB72B are microtubule inner proteins in the ciliary doublet microtubules.  Mol. Biol. Cell. DOI: 10.1091/mbc.E18-06-0405.

Yuyang J, Maier W., Baumeister R., Minevich G, Joachimiak E., Ruan Z., Kannan, N., Clark, D., Frankel, J. and Gaertig J. (2017). The Hippo pathway maintains the equatorial division plane in the ciliate Tetrahymena. Genetics. 206: 873-888.

Wloga, D., Joachimiak, E., Louka, P., and Gaertig, J. (2016). Posttranslational modifications of tubulin and cilia. Cold Spring Harb. Perspect. Biol. Doi: 10.1101/cshperspect.a028159. 

Vasudevan, K.K., Yuyang, J., Lechtreck, K., Kushida Y., Alford L., Sale, W., Hennessey, T., and Gaertig J. (2015). Kinesin-13 controls the quantity and quality of tubulin inside cilia. Mol. Biol. Cell. 26: 478-494.

Vasudevan, K.K., Song, K.K., Alford, L.M., Sale, W.S., Dymek, E.E., Smith, E.F., Henessey, T., Urbanska, P., Wloga, D., Dentler, W. Nicastro, D. and Gaertig, J. (2015). FAP206 docks radial spoke 2 and dynein c to ciliary doublet microtubule. Mol. Biol. Cell. 26: 696-710.

Yuyang Y., Lechtreck. K., and Gaertig J. (2015). Total internal reflection microscopy of intraflagellar transport in Tetrahymena thermophila. In: Cilia and Flagella. Methods in Cell Biology. 127: 445-456.

Akella, S., Wloga, D., Kim, J., Starostina N.G., Lyons-Abbott, S., Morrissette, N.S., Dougan S.T., Kipreos, E.T, and Gaertig, J. (2010). MEC-17 is an alpha-tubulin acetyltransferase. Nature. 467: 218-222.

Suryavanshi, S., Eddé, B., Fox, L., Guerrero, S., Griffin, P., Hard, R., Hennessey, T., Kabi, A., Malison, D., Pennock, D., Sale, W., Wloga, D., and Gaertig, J. (2010). Tubulin glutamylation regulates ciliary motility by altering inner dynein arm activity. Current Biology. 20: 435-440.

Wloga, D., Webster, D., Rogowski, K., Bré, M.-H., Levilliers, N., Jerka-Dziadosz, M., Janke, C., Dougan, S.T. and Gaertig, J. (2009). TTLL3 is a tubulin glycine ligase that regulates the assembly of cilia. Dev. Cell. 16: 867-876.

Verhey,K., and Gaertig J. The Tubulin Code. (2007). Cell Cycle, 6: 2152-2160.

Sharma, N., Bryant J., Wloga D., Donaldson R., Davis R.C., Jerka-Dziadosz, M., and Gaertig J. Katanin regulates dynamics of microtubules and biogenesis of motile cilia. (2007). J. Cell Biol. 178: 1065-1079.

Janke, C., Rogowski K., Wloga, D., Regnard,C., Kajava, AV., Strub, J-M., Temurak, N., van Dijk,J., Boucher, D., van Dorsselar, A., Suryavanshi, S., Gaertig, J., and Edde B. (2005). Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science. 308: 1758-1762

Thazhath R., C. Liu, and J. Gaertig. 2002. Polyglycylation domain of beta-tubulin maintains axonemal architecture and controls progression of cytokinesis in Tetrahymena. Nature Cell Biol. 4: 256-259.